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Abstract

Recirculating, energy-recovering linacs can be used as
driver accelerators for high power FELs. Instabilities which
arise from fluctuations of the cavity fields are investigated.
Energy changes can cause beam loss on apertures. or, when
coupled to Mse, phase oscillations. Both effects change the
beam induced voltage in the cavities and can lead to un-
stable variations of the accelerating field. Stab:lity analysis
for small perturbations from equilibriumn is performed and
threshold currents are determined. Design strategies to in-
crease the instability threshold are discussed and the high
average power FEL proposed for construction at CEBAF
is used as an example.

I. INTRODUCTION

Multipass recirculating, energy-recovering accelerators
can be cost-effective and energy—efficient driver accel-
erators to high-average-power, high—efficiency. low-cost
FELs. These accelerators however, are prone 1o instabili-
ties which arise from fuctuations in energy which win turn
cause current loss on apertures, leading to rf field changes
and further energy changes. Furthermore, energy fluctu-
ations coupled to compaction factors of non-isochroncus
arcs can also cause changes in the arrival time of the
bunches at the entrance of the linac, leading to further
energy changes. These instabilities have been observed ex-
perimentally in the energy recovery experiment performed
at Los Alamos [1]. Both types of instabilities (longitudinal
and beam loss) are analyzed here.

We start with the equivalent circuit model for a cavity,
and present the equation that describes the interaction be-
tween cavity fields and the beam. Next we perform a sta-
bility analysis for small perturbations from equilibrium and
we derive expressions for threshold currents for both types
of instabilities. As a numerical example we use the design
parameters of the high average power FEL proposed for
construction at CEBAF. We conclude with a discussion on
the role of feedback and we outline plans for future work.

II. EQUIVALENT CIRCUIT MODEL FOR A
CAVITY

An 1f cavity powered by an rf source (klystron) can be
represented by a resonant LCR circuit (2]. The beam in the
cavily is represented by a current generator. The interac-
tion of the beam with the cavity fields can be described,
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to a very good approximation, by the followiny first order
differential equation,
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where wgy 1s the cavity resonant frequency, @ 1s the loaded
@ of the cavity and R is the loaded shunt impedance
Rr = (r/Q)Qr. In arriving at (1) we assume that the
cavity voltage, generator and beam current vary as et
where w is the rf frequency, and V., [; and I; are the cor-
responding complex amplitudes (phasors) in the rotating
frame of reference, varying slowly with time. In this equa-
tion [, is equal to the average beam current (in the limit of
short bunches) and I; denotes the magnitude of [, Also ¥
is the tuning angle defined by tan¥ = 20 {w — o) /ws.
In steady-state the generator power is given by
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where J is the cavity coupling coefficient, and can be cal-

culated from Q¢ = Q/(1 + 7).
III. STABILITY ANALYSIS

As a concrete example, we take the energy-recovering
driver accelerator design of the CEBAF FEL [3]. The gen-
eralization is straightforward. We assume that the acceler-
ator consists of a linac with a two—pass recirculation trans-
port. The beam is injected into the linac, accelerated and
transported through the first (low energy} arc. It then re-
turns to the linac where it is accelerated for a second time
and transported through the second (high energy) are. A
wiggler magnet in the middie of the second arc provides
the FEL interaction, as a result of which the beam loses
energy and greatly increases its energy spread. The result-
ing beam is returned into the linac, decelerated for energy
recovery through two passes and then transferred into the
dump. Therefore, in this model, there are four beams in
the linac cavities at any time (two accelerating and two
decelerating).

Furthermore, we limit the stability analysis to the lin-
ear regime where perturbations {rom equilibrium are small.
This linear approximation is sufficient for determining the
stability boundaries of the system and the growth rates of
instabilities. Much of our {ormalism is similar to the anal-
ysis of the rf stability in the Los Alamos FEL energy re-
covery experiment [1}.

Two effecls may trigger an unstable behavior of the sys-
tem: beam current loss and shift in the arrival time of each
pass at the entrance of the linac. The beam current [oss
may originate {rom an energy offset which shifts the beam
centroid off its central trajectory and leads to beam scrap- -
ing on apertures. The phase shift may originate from an



energy offset coupled to the finite compaction factors (Mse)
in the arcs.
We assume that the generator current [, is constant and

is expressed in the polat form Iy = I, e'¥s . We assume that
the cavity voitage is perturbed in amphtude and phase, by
9{t) and o(t) respectively, therefore

= [Vio + s()]e Ve + o(t)]

We now write the expressions for the beams in each of
the four passes. We assume that the two accelerating—pass
beams (pass 1 and 2) remain unperturbed and express them
in polar form as I = Ioc'q" L= Ioc'q"i’, where ¥, and
¥, are the beam phases with respect to the phase of the
cavity voltage ¥.. However there may be energy errors at
the end of each pass given by
yeos [¥. + () —

e (1) = Voft ¥,] = Vigcos (W, — ¥y) (2)

for pass | beam, and

€2(1) = e (1) +Vilt) cos [¥, + o(t) = Wa]~ Vip cos (¥, — ¥»)
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for pass 2 beam. where V, is the magnitude of V.. The two
decelerating beams can be perturbed both in magnitude

and phase

Is = [lo + :"3(1)]6:‘[@3 + o3(t)]
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where
i3(t) = —byJpea{t = 73) (4)
da(t) = —haea(t — 1) (53

and i4(t) = i3(t),  #4{t) = @3(t). The coefficients h; and
b~ are proportional to the compaction factor of the second
arc and its momentum aperture respectively, and can be
expressed as

.‘Mssu
= (6)

where Mss is the compaction factor of the arc, w is the tf
frequency, ¢ is the speed of light and E' the beam energy
around the arc. Similarly, by can be expressed as
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where 7. is the horizontal dispersion (at the maxirnum
point) of the arc, and L is a loss coefficient which charac-
terizes the amount of beam loss; e.g., if 1 mm offset gives
rise to 1073 of beam scraping, then L = 1 m.

In addition we have taken into account Lhe time 77 it
takes the electrons to travel around the second arc and
through the linac. To simplify the calculations we have
assumed that the first arc is isochronous (h;=0) and it has
“Infinite aperture” (b;=0).

It is assumed that all perturbations imparted to the
equilibrium state are small, ¥ &€ Voo, @ € 1, 134 < Iy,
$3.4 < 1. We can therefore linearize eqs (2), (3) to get
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where we have set ¥, = 0, without loss of generality. From
eqs (4) and (5) we write 13(t) and ¢a(t) as

is{t) = —0(t = r)balolcos ¥; + cos ¥a)
—@(t = 12)baloVea(sin ¥y + sin ¥a)
o3(t) = —oft - 72 }ha{cos ¥y + cos ¥a)

—d(t — 72)haVeo(sin ¥ + sin ¥3)

Notice that pert.urbatmns on both decelerating beams can
be expressed in terms of © and & only through a series of
nested relations. This is true for any number of passes and
the problem at the end amounts to finding the roots of the
determinant of a 2 x 2 matrix.

Substituting the above equations into the cavity equation
(1), separating real and imaginary parts and performing
the linearization. we obtain two linear diferential equations
in ¢ and . To study the stability of the system we assume
that ¢{t) and @(t) vary with time according to et 5(t) =
v(s)es, o(t) = &(s)eSt, to obtain two algebraic equations
MA =0, where M is a 2 x 2 matrix and A is the column
vector with v and ¢ as components. The matrnix elements
of M are
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where

Ay = =Ipha{sin ¥3 +sin ¥ ){cos ¥y + cos ¥3)

+Iobz(cos W3 + cos Wy )(cos ¥, + cos ¥a)

By = =Iphy(sin ¥y + sin ¥4)(sin ¥, + sin ¥2)
+Joba{cos Wa + cos T )(sin ¥; + sin ¥s)

Ci = —Ioha(cos ¥3 + cos W )(cos ¥y + cos ¥2)
—{oba(sin U3 + sin Wy )(cos ¥ + cos ¥3)

D, = —Igho(cos ¥3 + cos ¥4)(sin ¥, + sin ¥3)

—Ioba(sin W3 + sin ¥4 )(sin ¥, + sin ¥2)

The determinant of M is then set to zero and the two roots
of s are examined. The real parts of the roots will provide
the damping or growth rates of perturbations. The imagi-
nary parts of the roots will give the oscillation frequencies
relative to the driving rf frequency. I both rocts have zero



or negative real parts, the system is stable; otherwise the
system is unstable. We found that the 415 ns delay in the
high—energy arc does not affect the stability boundaries
and growth rates significantly, therefore we set 72=0, and
thus reduced the complexity of the calculation.

Taking this into account, the two roots of s are

s= (%) {—1 + %IDRL (heS + 5,C) = \/6]}

where
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and S and C are defined as
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From the two roots the one with the positive sign is the
limiting one. We can now derive an expression for the
threshold current of these instabilities, by setting s=0. For
the CEBAF FEL parameters, the longitudinal instability
threshold current simplfies to
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where eq.(6) has been used for A;. This equation demon-
strates possible design strategies for increasing the insta-
bility threshold:

1. reducing the shunt impedance of the linac,

2. choosing the off-crest phases such that the S term
cancels the Ctan ¥ term,

3. entirely or nearly isochronous arcs, even in the sense
of having opposite signs of Msg in the two halfs of the
arc (before and after the wiggler),

4, lowering the rf frequency. -
It is worth noting that this expression for the threshold
current agrees with the expression derived in reference [4]
in its functional dependency on emergy, frequency, shunt
impedance and compaction factor.

The threshold for the beam loss instability is

2FE

Iy =— ,
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where ¢q. (7) has been used for &,.

IV. THE HIGH AVERAGE POWER FEL AT
CEBAF: AN EXAMPLE

The driver accelerator for the high average power FEL
proposed for construction at CEBAF is a recirculating
energy-recovering 200 MeV, 5 mA cw superconducting rf
(srf) electron accelerator. The accelerator consists of a 10
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MeV injector, a 96 MV srf linac with a two—pass recircula-
tion transport which accelerates the beam to 200 MeV, fol-
lowed by energy recovery deceleration through two passes
to ~10 MeV, and then transport to the dump.

Longitudinal dynamics imposes off-ctest operation for
the four beams, and that in turn implies that the cavi-
ties must be operated ofl resonance to minimize the re-
quired generator power. In the baseline design the phases
of the four beams are: ¥; = 1.8%, ¥y = ~13.3°%, ¥, =
195.3°%, W, = 180°, therefore § = 0.92 and C = -3.82.
The optimum tuning angle is —61.5°. For Mz = —047m
in the high epergy arc, and £ = 200 MV, &2 is equal to
~7.7 %x 10-% rads/V. Assuming n;/L =1, by = =5 x 10~°
A/V. For the above value of h;, assuming by = 0. the
threshold for the longitudinal instability is 130 pA. On the
other hand, for A = 0 and the assumed value of ba, the
threshold for the beam loss instability is 1.4 mA. When
both instabilities are present, the threshold is dominated
by the longitudinal one and is 130 pA. Clearly at these de-
sign parameters the threshold is less than our design goal.
therefore active feedback is required to control the insta-
bility. Preliminary analysis indicates that the gain of the
rf feedback loop stabilizes the system.

An alternative lattice design has been developed which
has opposite signs of Mys for the lattice segments entering
and leaving the wiggler (so that the total Mzs ~0). and the
beam phases could be arranged to cancel, therefore on-
resonance operation would be possible. This alternative
design is unconditionally stable against the longitudinal in-
stability because M;s = 0 over the second are. For the al-
ternative design (\¥; = 13.5%, ¥, = 0°, W3 = 1935°% ¥, =
1800}, S~ 0 and C = —=3.9. However both the baseline
and the alternative scenarios have approximately the same
bearn loss instability threshold.

V. CONCLUSIONS

The above analysis is valid only in the open loop case.
The presence of feedback will damp the growth of phase
oscillations. Since there 1s no phase shift induced by the
instabilities, we expect that maximum gain is needed at
the cavity resonance frequency. Gains of 3000 (70 4B),
which are typical in the CEBAF rf control system at these
frequencies, will effectively move the threshold well above
the 5 mA design current. Future directions include incor-
porating feedback in our analysis and addressing gain vs
bandwidth questions.
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